Problem 26.27

There is no rhyme or reason to a problem like this. You just have to take what you know and play with it until something pops. Here goes:

--The equivalent capacitance for a parallel combination of like capacitors will be:

$$C_p = C_1 + C_2 + C_3 + ... + C_n$$

= nC

as there are "n" of them and they are all the same size.

--The equivalent capacitance for a series combination of like capacitors will be:

$$\frac{1}{C_{s}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}} + \dots + \frac{1}{C_{n}}$$

$$\Rightarrow C_{s} = \frac{1}{\frac{1}{C} + \frac{1}{C} + \frac{1}{C} + \dots} = \frac{1}{n(\frac{1}{C})}$$

$$= \frac{C}{n}$$

1.)

But we are told that:

$$C_{p} = 100C_{s}$$

$$\Rightarrow nC = 100\left(\frac{C}{n}\right)$$

$$\Rightarrow n^{2} = 100$$

$$\Rightarrow n = 10$$

As I said, just playing around . . .